
A Programming Environment for Global
Activity-based Applications

Flavio Corradini
Dipartimento di Informatica,

Universit̀a di L’Aquila
67010 L’Aquila, Italy

Email: flavio@di.univaq.it

Leonardo Mariani
DISCo

Universit̀a di Milano Bicocca
20126 Milano, Italy

Email: mariani@disco.unimib.it

Emanuela Merelli
Dipartimento di Matematica e Informatica,

Universit̀a di Camerino
62032 Camerino, Italy

Email: emanuela.merelli@unicam.it

Abstract— This paper focuses on large-scale distributed sys-
tems that can be modeled as workflows of activities sharing
resources, knowledge, know-how and services. We propose a
programming environment for such global activity-based appli-
cations the execution of which relies on the agent-technology.
Methods and emerging technologies will be discussed from the
user level applications to the run-time support. The programming
environment we propose is the result of our experience in
designing and implementing applications within specific appli-
cation domains such as controlling industrial platforms and
bioinformatics.

I. I NTRODUCTION

Nowadays computer systems are more and more complex.
They can be geographically distributed, present features of
dynamic topology, real-time and heterogeneity, fault-tolerance,
mobility and service discovery. To manage complexity in such
systems new methodologies, methods and tools for their anal-
ysis, design and implementation have been provided. Among
others we mention component-based design and programming
[1], ubiquitous computing [2], agent-based systems [3] and
mobile code [4].

This paper focuses on large-scale distributed systems that
can be modeled as workflows of activities that share resources,
knowledge, know-how and services. Though many such fea-
tures can be abstracted away at the workflow application level,
the infrastructure that supports this kind of applications must
anyway support (very often) distributed interactions, service
discovery, fault tolerance and security. Distributed interactions
are necessary to make possible communication between part-
ners located in different places. Fault tolerance is needed to let
complex, distributed systems working even in faulty situations
such as site failures or disconnections. Service discovery is
needed to take efficiently advantage of resources or system
capabilities. Finally, security allows to prevent malicious users
and servers to perform dangerous actions such as mitigate the
diffusion of false information.

Most of these attributes are often strictly needed in cer-
tain kinds of systems and make a system very difficult

This work was supported by the Center of Excellence for Research ‘DEWS:
Architectures and Design Methodologies for Embedded Controllers, Wireless
Interconnect and System-on-chip’, by the MURST strategic project ‘Oncology
Over Internet’ and by the MURST project ‘Sahara: Software Architectures for
Heterogeneous Access Networks infrastructures’.

to design. A deep understanding of the application domain
can certainly help in reducing problems. Simpler techniques,
technologies and implementation strengths can be suggested
by a proper analysis of the domain itself. The application
domain, moreover, suggests the set of primitive activities
that can be composed to build workflows. Besides the above
attributes, the applications we refer to are, hence, domain-
specific applications.

We now describe a general programming environment for
global activity-based applications as described above. This is
the result of our experience in designing and implementing
applications for controlling industrial platforms [5] and for
searching data within in the bioinformatics domain [6]). We
have abstracted a general architecture for the design of our
applications based on three conceptual layers:

A User Layer, on the top of the architecture, where the
user specifies the application as a workflow of activities with
the features described above. The specification language must
be simple and intuitive to use as, in most cases, graphical
notations are. Indeed, our potential users may not be computer
practitioners.

A System Layer, on the middle of the architecture, which
provides the needed environment to map a user-level work-
flow into a set of more primitive (and already implemented)
activities. These latter cooperate to implement the activities at
the user level and embed implementation details abstracted at
the user level (fault tolerance, for instance). These primitive
activities follow the agent-based technology since, as argued
several times in the literature (see, for instance [7], and
references therein), the agent paradigm seems to be particu-
larly suitable for designing environments populated by entities
that communicate and coordinate their activities (as most of
the applications of our interest are). A particular significant
ingredient at this layer is the compiler that maps user level
activities into system level activities. The compiler must be
aware of the available a library of implemented activity
but more significantly it must be aware of the environment
(software/hardware resources, knowledge, services...)

A Run-Time Layer, at the bottom of the architecture,
that provides the needed support for the run-time execution

of system level agents; namely, primitives for coordination,
communication, security, mobility and other implementation
details.

Summing up, the whole architecture for programming our
applications is that shown in Figure 1, where the three intro-

User Application Workflow

Workflow Management

Application Agents

Application Agents Management

Service Agents

Core Level

User Layer

System Layer

Run-Time Layer

Fig. 1. A Software Architecture for Global Activity-based Applica-
tions

duced layers, User Layer, System Layer and Run-time Layer,
are themselves split in two conceptual levels (the application
and its infrastructure). On the top of the architecture, the
User Application Workflows layer, reside our applications;
namely our user workflow applications. The underlying Work-
flow Management Layer provides the needed environment
to support workflow application specifications. It includes,
for instance, CASE tools and graphical environments for
editing workflows. The User Application Workflows level and
Workflow Management level constitute the User Layer.

The pool of agents that implements user applications reside
in the Application Agents layer, below the Workflow Man-
agement layer. The behavior of such objects is still described
in a (lower level) workflow notation. The Application Agents
Management contains a (context-aware) compiler and libraries
of suitable agents that implement primitive user activities. Ap-
plications Agents level and Applications Agents Management
constitute the System Layer.

At the bottom of the architecture we find the Service
Agent layer where agents located in sites provide access to
services available in those sites. Then the Core provides the
infrastructure necessary to execute and support agent execution
and other implementation details. The Service Agents and the
Core constitute the Run-time Layer.

The rest of the paper is organized as follows. Sections II,
III, IV describe in more details the User Layer, System Layer
and Run-time Layer, respectively. To fix intuition we make
use of a running example that, actually, identifies a specific
class of applications where our programming environment
can be exploited (different from those presented in Section
V). Section VI contrasts our approach to existing ones, and
Section V summarizes our experience on specific applications
and discuss concluding remarks and further work.

II. U SERLAYER

The applications we address in this paper are based on
workflows, called User Level Workflow (ULW), describing the
control flow of the activities that must be performed to reach a
specific goal. A general user of this system is not a computer
expert, so he/she needs an environment with characteristics of
user-friendliness, usability and simplicity. A graphical notation
can provide a suitable environment for the composition and
configuration of activities that are contained in a domain-
specific library.

There are several formalisms (notations) supporting the
visual composition of activities. These formalisms, often based
on UML and Petri Nets (see, for instance, [8], [9], [10] and
references therein), allow for the sequential composition of ac-
tivities, their distribution, coordination, cooperation . . . Given
the wide number of different proposals (often offering not yet
stable or partial solutions), in this introductory paper we do
not faithfully follow one of these formalisms but, instead,
we try to explain our ideas by resorting to a simple and
intuitive notation. We believe that this way makes the paper
readable and appealing also to non-experts in specific research
areas. However, those readers that are familiar with UML
can find in our workflow descriptions some strong similarities
with UML Activity Diagrams. We intend to use the emerging
notation AUML [11] (always based on UML) for the aspects
of agent coordination and agent communication protocol in
future, more detailed, descriptions of this paper.

Together with activities some state information is often
needed that in our notation take the form of notes attached with
activities; one on the right denoting the parameters in input
to the activity and one on the left report the state variables
affected by the performed activity. The whole set of state
variables are defined in a stand-alone note at the beginning
of the diagram.

As one would expect, the activities that a user can compose
can be either primitive activities or composite activities. These
latter can be already described in a workflow notation and typ-
ically denote frequently used workflows or user personalized
workflows. Moreover, the available activities are, of course,
customized for a specific application domain. This contributes
to let our applications domain-specific.

The definition of a ULW proceeds by choosing basic activi-
ties on existing libraries and connecting such actions according
to operators of the language. These operators should have a
clear and intuitive meaning even for non-experts (this is the
reasons why we used UML-like activity diagrams). The user,
then, sets opportunely the input and output notes to configure
the application, e.g. the name of the book that we would like
to buy or username and password enabling the access to a
service.

Figure 2 shows an example of a user workflow describing
the activities needed to buy a DVD recorder. Predefined state
variables are described in the stand-alone note on the top-left
corner. The flow of the activities begins with the concurrently
searching for best price of the device and checking the bank

account. These two activities are then synchronized to verify
if a sufficient amount of money in the account is available.
In the positive case, the purchase is possible. Otherwise, a
notification email is sent. It is worth of noting that most details
such as security, implementation details, coordination policy,
etc. are abstracted away at this abstraction level creating a very
simplified environment for the user.

III. SYSTEM LAYER

A User Level Workflow (ULW) is compiled into a System
Level Workflow (SLW), that now specifies the behavior of
application agents; namely, the activities that a pool of user
agents (also called MOWE, for Mobile and Opportunistic
Workflow Executors) must perform for user level activities by
migrating from a site to another to retrieve information, com-
municate each other, coordinate activities, etc. The compiler,
then, produces two outputs: a SLW and a pool of MOWEs that
implements the SLW. Each MOWE (actually the “skeleton”
of each MOWE) resides in a domain-specific library that the
compiler uses to implement the primitive activities used to
specify the ULW.

SLW, as ULW, are specified with activity diagrams notation.
In the former case, however, swimlanes are used to emphasize
the fact that each user level activity can be implemented by a
pool of coordinated agents; where, in particular, each swimlane
denotes the actions executed by each agent. A possible SLW,
output of the compilation of the ULW in Figure 2 is shown
on Figure 3.

The scope of a state variable is local to a single agent and
hence limited to a swimlane. When the input note is positioned
in a different swimlane from the one containing the activity
state, this means that a message from the note’s owner agent
must be received. We also use two types of synchronization
bars: inter-agent synchronization when multiple agents must
synchronize, and intra-agent synchronization when a single
agent must coordinate its activities.

The mapping is performed by substituting each user level
activity to a workflow of system level activity with a case-by-
case approach.

It is quite difficult to produce an efficient pool of agents
without having specific information on the environment; in
fact the agent implementation would have to face a wide range
of possible situations. Our approach is to exploit acontext-
aware compiler. A compiler is context aware if it knows
the environment and takes advantage of this knowledge to
produce goal-directed agents. In our case the compiler knows
information such as hosts making part of the system, the type
of existing services, the type of information stored on each
place, the topology of the system and other useful parameters
depending on the application domain. During the compilation
some of these parameters may change, for this reason the
compiler creates opportunistic agents. An opportunistic agent
may face an unpredicted situation and still solve its task.
Opportunism is achieved by embedding a set of rules into
the MOWE that allows the agent to deal with situations that
are not explicitly specified in the user level workflow but that

can happen such as site or connectivity failure, login failures,
service accesses failures, etc.

Then, by using a context-aware compiler the user can
completely ignore where to search information, in which
form the information is stored, how he/she can interacts with
each service, and the number of interesting hosts. All these
information are managed by the context-aware compiler that
maps an application workflow (a ULW) to an (context-aware)
agent-based workflow specification.

The execution of MOWE is supported by a run-time support
of agents that implement security, fault tolerance, mobility,
distributed communication and (easy) access to services as
discussed in the next section.

IV. RUN-TIME LAYER

As already described, the overall structure of the system
is very complex, it supports abstract specifications that are
mapped into a complex distributed and coordinated flows
of activities over a large-scale distributed system. In order
to master this complexity, a (two) layered architecture is
considered, where at the top there is a:

- Service agent layer, that provides a set of agents offering
services in the place where they are located (service
agents do not migrate among sites), while at the bottom
there is a,

- Core that provides all the infrastructure necessary to
execute and support both user and service agents, in par-
ticular security, fault-tolerance, communication, mobility
and resource management.

More in detail, the service agents provide access to services.
When a user agent migrates and arrives in a place it can
query the yellow page service to gain information about
services offered in the place and then it communicates with
the service agents to gain the information it needs. This
paradigm simplifies the interactions enabling the use of an
agent communication language, e.g. KQML [12] or Fipa
ACL [13], as a unified way to communicate with other agents,
services or resources.

Regarding the core layer it has to be noticed that most of
the attributes above mentioned are already present in JADE
[14], a FIPA Compliant agent platform. Then, in principle, we
can take JADE as a core layer for our applications, though,
in the past we had to develop the core from scratch in order
to take advantage of particular design decisions suggested by
the specific domain.

V. A PPLICATIONS OF THEGENERAL ARCHITECTURE

We propose a programming environment for global activity-
based applications; namely, large-scale distributed systems that
can be modeled as workflows of activities sharing resources,
knowledge, know-how and services. The typical scenario is the
following. A user specifies his/her application in a workflow
of activities taken from available libraries of activities tied
to a specific application domain. The user then invokes a
compiler that translates the user application into a pool of
agents committed to the execution of the user activities. The

CheckBankAccount

BankInfo: http://www....

UserName: 'Leo'

Password: 'pwd'

accountamount

SearchForBestPrice

DVDModel: dvdmodel

DVDConstructor: dvdconstructor

price

vendorsite

[price<=accountamount]
[price>accountamount]

PurchaseDVD

DVDModel: dvdmodel

DVDConstructor: dvdconstructor

VendorSite: vendorsite

MyName: myname

MySurname: mysurname

CreditCardHolder: mynamecomplete

CreditCardNumber: "4567...."

CreditCardExpirationDate: "01/02/2005"

SendEmail

To: myemail

EmailType: "MsgPurchaseFailed"

EmailVendorSite: vendorsite

Description: "Not Enough Money in Your Account"

NecessaryMoney: price - accountamount

purchaseresult

purchasedescription

[purchaseresult="OK"]
[purchaseresult="KO"]

SendEmail

SendEmail

SendEmail

To: myemail

EmailType: "MsgPurchaseFailed"

EmailVendorSite: vendorsite

Description: purchasedescription

To: "merelli@unicam.it"

EmailType: "email"

Subject: "Purchase"

Body: "I have bought the " + dvdmodel + ".

 If you want we can watch a film together."

To: myemail

EmailType: "MsgPurchaseSuccessful"

EmailVendorSite: vendorsite

Description: "Purchase Accomplished"

dvdmodel="FJ..."

dvdconstructor = "Constructor"

myname="Leonardo"

mysurname="Mariani"

mynamecomplete="Leonardo Mariani"

myemail="mariani@disco.unimib.it"

accountamount

price

vendorsite

purchaseresult

purchasedescription

Fig. 2. User-level Workflow

AgentB AgentCAgentA

Model: dvdmodel

Constructor: dvdconstructor

dvdmodel="FJ..."

dvdconstructor = "Constructor"

myname="Leonardo"

mysurname="Mariani"

mynamecomplete="Leonardo Mariani"

myemail="mariani@disco.unimib.it"

list={"www.a...","www.b...","www.c..."}

index

dvds[]

checkresult

bestprice

accountamount

purchaseresult

purchasedescription

Move

SearchDVD

CheckList

Place:list[index]

index

dvds

List:list

Element:index
checkresult

[checkresult=NotEndList]

[checkresult=EndList]

index

Model: dvdmodel

Constructor:dvdconstructor

dvdmodel="FJ..."

dvdconstructor = "Constructor"

myname="Leonardo"

mysurname="Mariani"

mynamecomplete="Leonardo Mariani"

myemail="mariani@disco.unimib.it"

list={"www.d...","www.e..."}

index

dvds[]

checkresult

Move

SearchDVD

CheckList

Place:list[index]

index

dvds

List:list

Element:index
checkresult

[checkresult=NotEndList]

[checkresult=EndList]

index

dvds:dvds

dvds:dvds

RequestAccountInfo

BankInfo: http://www....

UserName: 'Leo'

Password: 'pwd'

accountamount

amount:accountamount

[dvds[bestprice]<=accountamount]

[dvds[bestprice]>accountamount]

FindBestPrice

dvds

list

bestprice

SendEmail

To: myemail

EmailType: "MsgPurchaseFailed"

EmailVendorSite: list[bestprice]

Description: "Not Enough Money in Your Account"

NecessaryMoney: dvds[bestprice] - accountamount

Move

place:list[bestprice]

PurchaseDVDs

Model: dvdmodel

Constructor: dvdconstructor

VendorSite: list[bestprice]

MyName: myname

MySurname: mysurname

CreditCardHolder: mynamecomplete

CreditCardNumber: "4567...."

CreditCardExpirationDate: "01/02/2005"

purchaseresult

purchasedescription

[purchaseresult=OK]

[purchaseresult=KO]

SendEmail

To: myemail

EmailType: "MsgPurchaseSuccessful"

EmailVendorSite: list[bestprice]

Description: "Purchase Accomplished"

SendEmail

To: "merelli@unicam.it"

EmailType: "email"

Subject: "Purchase"

Body: "I have bought the DVD " + dvdmodel + ".

 If you want we can watch a film together."

SendEmail

To: myemail

EmailType: "MsgPurchaseFailed"

EmailVendorSite: list[bestprice]

Description: purchasedescription

getAccountAmount

accountamount

accountamount

Fig. 3. Agent-level Workflow

compiler transports its knowledge of the environment into the
agents in such a way that these latter may assume opportunistic
behaviors in cases of exceptions during execution. The agent
technology is well suited for developing complex, distributed
systems [7], and our architecture can be adapted to exploit
other technologies. Indeed, we aim at experimenting also
components in place of agents.

The execution environment of the pool of application agents
is provided by a run-time support that implements primitives
for agent coordination and communication, agent mobility and
security, fault-tolerance, services and resources.

In the rest of this section we shortly describe two instances
of the presented environment: one in the industrial domain,
the other in bioinformatics. We shortly describe the different
domains and the roles of the involved agents.

A. Product Quality through Information Integration in Indus-
trial Platforms

The production process is usually performed by a set of
activities associated to different actors. In the case of a
supply chain, the actors are the suppliers and the production
plans. The suppliers provide both row and semi-manufactured
components, while the production plans assemble the com-
ponents to produce the final product. Once a defect or mal-
function in assembling the final product is identified, all the
information regarding the quality tests of any component
should be retrieved. Quality control within a supply chain
is a complex activity, information integration is difficult and
access to all information simultaneously is, in most cases,
impossible. In this setting our workflow application support
the quality control through the traceability of the different
components and semi-manufactured products [5]. User agents
support the execution of workflow activities; they retrieve
component’s test information from the suppliers and integrate
data. Service agents allow the access to company internal
data repositories. In fact each single supplier may be using
quality control mechanisms different from other suppliers, and
generating different data as result from specific tests. The
resulting distributed system is based on a network of hosts (the
suppliers) each one allowing the access to local information
through proper agents of our middleware.

Product traceability during the product production process
is also an interesting application of our architecture. This is
on going research.

This research is carried out thanks to a project funded by
Loccioni Group [15] and by a project SICOM “SIstemi COop-
erativi Multiagente” co-funded by CIPE-Regione Marche and
Universit̀a di Camerino.

B. Retrieving and Integrating Data in Bioinformatics

In the present post-genomic era, biological information
sources are crammed with information gathered from results of
experiments performed in laboratories around the world, i.e.,
sequence alignments, hybridization data analysis or proteins
interrelations. The amount of available information is con-
stantly increasing, its wide distribution and the heterogeneity

of the sources make difficult for bioscientists to manually
collect and integrate information. Users who possess their own
algorithm, but have no data to gain evidence of the correlation
between cause and effect would have the possibility to move
and execute their code to data sources. Existing services offer
no easy or efficient solution to this problem. For example,
Basic Local Alignment Search Tool (BLAST) [16] offers a
set of services (BLASTp, BLASTn ...) to allow sequences
comparison, but it doesn’t support the execution of correlated
activities of an experiment. In the Bioagent project1 we have
provided a framework to define the bioscientist experiment
as a workflow of activities[6]. For which, a pool of mobile
user agents is created to completely decentralize local tasks
processing, and free bioscientists from the need to continuous
interact with remote services. As an example of workflow
application, suppose to look for a new protein structure; the
bioinformatician (biochemestrian) that make the experiment,
first selects a m-RNA sequence for a known protein, then
by usingBLASTn in the genomic database GenBank looks
for the first 10 sequences with the highest score. Afterwards,
he looks for the crystallographic structure (the PDB files) of
the associated proteins. This search is made in two different
data collections SwissProt and PubMed. In SwissProt he uses
BLASTp to extract the first 5 sequences with the highest
score, and for each article he extracts the references to the
Protein Data Bank. In PubMed, for any protein (or sequence)
he extracts all the articles written on this sequence, by selecting
only those for which a crystallographic structure is available
(option: Structured Links). Each workflow’s activity is de-
scribed by a set of tasks supported by a pool of user agents;
each user agent coordinates the collection and integration of
retrieved information by moving to remote data source and by
cooperating with local service agents.

This research is carried out thanks to the MURST strategic
project ‘Oncology Over Internet’.

VI. RELATED WORK

The complexity of the applications we are addressing,
though tight to specific application domains, needs an involved
engineering and the usage of suitable technologies. Our work
aims at giving a general architecture that provides guidelines
for designing global activity-based applications and suggests
possible technologies. All the applications of this kind we have
developed falls within this setting.

Similarities to this work can be found in the suggested
technologies. Workflows, that cover a wide range of distributed
applications and form a nice specification language (presented
as Activity Diagrams, Petri Nets or similar), have a wide
literature (see WfMC reference model [17] and references
therein). The agent technology, as a means to implement
workflows has been suggested, for instance, by Chang and
Scott [18] and by Mertz et al. [19]. It has to be said, however,
that most papers propose to implement WfMS with multi-
agent systems where agents are stationary [20], [21], [22], to

1www.bioagent.net

support to Web Services [23], or specialized in manufacturing
[24]. Some agent mobility is present in the AWA architecture
by Stormer [25] where, agents of different types, form a
work team oriented to execute a workflow. None of these
works, however, present and discuss the needs of having a
context-aware compiler to translate an abstract workflow into
a specialized mobile pool of agents trained to cooperate in an
opportunist way during their execution.

Another work with similar aims as ours has been recently
proposed by Ricci et al. [26]; they use the center space as com-
munication model and TuCSoN coordination laws as workflow
definition language. Tuple space enhances uncoupled interac-
tions in space and time. A Programming environment has
been proposed also in [27], where it is possible to define
applications based on cooperating agents. For the kind of
applications we are interested in (and also because an agent
is typically aware of the pool of agents with which it has
to coordinate activities) we decide to rely on message passing
communication. This also allows us to base our middleware for
global activity-based applications on JADE, a FIPA Compliant
agent platform.

VII. C ONCLUDING REMARKS AND FURTHER WORK

The programming environment presented involves two key-
words that deserve to be mentioned once again: Workflows
and Agent Run-time support. Both of them posses guide lines
by well-established coalitions; namely, the Workflow Manage-
ment Coalition [28], and the already mentioned Foundation
for Intelligent Physical Agents also known as FIPA [29],
respectively. Any developed tool fitting the proposed guide
lines can be adopted in our (implementing) architecture so
that, hopefully, our proposal can be though as an effective
integration of the ideas by the two coalitions.

As already said, the presented architecture turns out to be
adaptable to different application domains. The case studies in
Section VII provide some evidence on its generality. Following
the programming environment presented in the current paper,
we are developing a similar workbench for a class of applica-
tions more and more frequent; those related to microcontrollers
and embedded systems in general.

ACKNOWLEDGMENTS

We would like to thank Rosario Culmone for useful dis-
cussions on the subject of this work. Diego Bonura and the
anonymous referees of WOA’03 are thanked for their valuable
comments and suggestions that have certainly improved a
previous version of this paper.

REFERENCES

[1] C. Szyperski,Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 1998.

[2] S. Consolvo, L. Arnstein, and B. R. Franza, “User study techniques
in the design and evaluation of a ubicomp environment,” inUniComp
2002: Ubiquitous Computing, ser. Lecture Notes in Computer Science,
G. Borriello and L. Holmquist, Eds., vol. 2498. Göteborg, Sweden:
Springer-Verlag, September 2002, pp. 73–90.

[3] M. D’Inverno, M. Luck, M. Fisher, and C. Preist, Eds.,Foundations
and Applications of Multi-Agent Systems, ser. Hot Topics, vol. 2403.
Lecture Notes in Computer Science, 2002.

[4] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Transaction on Software Engineering, vol. 24, no. 5, pp. 352–361,
May 1998.

[5] D. Bonura, F. Corradini, E. Merelli, and G. Romiti, “Farmas: a MAS
for extended quality workflow,” Dipartimento di Informatica, Università
di L’Aquila, Tech. Rep. TR05-2003, 2002.

[6] E. Merelli, R. Culmone, and L. Mariani, “Bioagent: a mobile agent sys-
tem for bioscientists,” inNETTAB Workshop on Agents nd Bioinformtics,
Bologna, July 2002.

[7] N. R. Jennings, “An agent-based approach for building complex software
systems,”Communications of the ACM, vol. 44, no. 4, pp. 35–41, 2001.

[8] W. Aalst, “The Application of Petri Nets to Workflow Management,”The
Journal of Circuits, Systems and Computers, vol. 8, no. 1, pp. 21–66,
1998.

[9] M. Dumas and A. H. M. ter Hofstede, “UML activity diagrams as a
workflow specification language,”Lecture Notes in Computer Science,
vol. 2185, pp. 76–90, 2001.

[10] W. Aalst, A. P. Barros, A. Hofstede, and B. Kiepuszewski, “Advanced
workflow patterns,” in7th International Conference on Cooperative
Information Systems (CoopIS 2000), ser. Lecture Notes in Computer
Science, O. Etzion and P. Scheuermann, Eds., vol. 1901. Berlin:
Springer-Verlag, 2000.

[11] J. Odell, H. Parunak, and B. Bauer, “Extending uml for agents,” inAgent-
Oriented Information Systems Workshop at the 17th National conference
on Artificial Intelligence., 2000.

[12] T. Finin, R. Fritzson, D. McKay, and R. McEntire, “KQML as an Agent
Communication Language,” inProceedings of the 3rd International
Conference on Information and Knowledge Management (CIKM’94),
N. Adam, B. Bhargava, and Y. Yesha, Eds. Gaithersburg, MD, USA:
ACM Press, 1994, pp. 456–463.

[13] Foundation for Intelligent Physical Agents, “FIPA97 specification, part
2: Agent communication language, Specification,” October 1997.

[14] F. Bellifemine, A. Poggi, and G. Rimassi, “JADE: A FIPA-compliant
agent framework,” inProceedings of the Practical Applications of
Intelligent Agents and Multi-Agents, April 1999, pp. 97–108.

[15] Loccioni Group, http://www.loccioni.com.
[16] BLAST: Basic Local Alignment Search Tool ,

http://www.ncbi.nlm.nih.gov/BLAST/BLASThome.html.
[17] WfMC, “The workflow management coalition,” http://www.wfmc.org.
[18] J. W. Chang and C. T. Scott, “Agent - based workflow: TRP support

environment (TSR),”Computer Networks and ISDN Systems, vol. 28,
no. 1501, 1996.

[19] M. Merz, B. Liberman, and W. Lamersdorf, “Using mobile agent to
support inter-organizational workflow management,”Applied Artificial
Intelligence, vol. 11, no. 6, pp. 551–572, 1997.

[20] I. Hawryszkiewycz and J. Debenham, “A workflow system based on
agents,” inDatabase and expert systems applications. Springer-Verlag,
1998, vol. 17, pp. 688–.

[21] A. Wang, R. Conradi, and C. Liu, “Integrating workflow with inter-
acting agents to support cooperative software engineering,” inSoftware
Engineering and Applications, 2000.

[22] N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien, and B. Odgers,
“Autonomous agents for business process management,”Int. Journal of
Applied Artificial Intelligence, vol. 14, no. 2, pp. 145–189, 2000.

[23] M. B. Blake, “An agent-based cross-organizational workflow architecture
in support of web,” inProceedings of the International Conference on
Electronic Commerce, 2001, pp. 567–588.

[24] R. Salice, E. Montaldo, M. Coccoli, M. Paolucci, and A. Boccalatte,
“Agent-based architecture for workflow management in manufactoring,”
in Proceedings of the International Conference on Advances in Infras-
tructure for Electronic Business, Science and Education on the Internet,
L’Aquila, Italy, August 2000.

[25] H. Stormer, “A flexible agent-workflow system,” inWorkshop on Agent-
Based Approaches to B2B, at the Fifth International Conference on
Autonomous Agents, 2001.

[26] A. Ricci, E. Denti, and A. Omicini, “Agent coordination infrastructures
for virtual enterprises and workflow management,” inCooperative
Information Agents V, ser. LNCS, M. Klusch and F. Zambonelli, Eds.,
vol. 2182. Springer-Verlag, 2001, pp. 235–246.

[27] M. Becht, T. Gurzki, J. Klarmann, and M. Muscholl, “ROPE: Role ori-
ented programming environment for multiagent systems,” inConference
on Cooperative Information Systems, 1999, pp. 325–333.

[28] The Workflow Management Coalition, http://www.wfmc.org.
[29] FIPA: Foundation for Intelligent Physical Agents , http://www.fipa.org.

